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We present and validate a general three-dimensional continuum model for predicting the coupled
fabric and stress transient response in 3D dense granular flows for the quasi-static regime. The
model is inspired by isotropic and kinematic hardening theory widely applied to plastic loading
cycles in metals, which constitutes a connection between two different flowing materials through
the same plastic modeling framework. The first part of the model consists of a differential evolution
equation for the fabric tensor, which incorporates a new parameter called contact persistence to
model the capacity of the fabric network to keep its contacts according to the relative direction of
the shear-rate. The second part of the model is an expression for the shear stress comprised of a
backstress, proportional to the fabric tensor, and a term proportional to the shear-rate direction.
This shear stress decomposition was obtained from DEM data extracted within a 3D Couette cell
during unsteady processes wherein the shear-rate direction rotates instantaneously with respect to
the axis perpendicular to the walls of the cell. The results of the model are compared with DEM
simulations for different changes in shear orientation, achieving a good agreement for the evolution
of the fabric and deviatoric stress tensors. The model is shown to be compatible with the second
law of thermodynamics, revealing that the origin of the backstress flow resistance in granular media
is distinct from the cause of backstresses in metals; rather than arising from stored defect energy, it
arises from the dependence of dilatancy on the alignment of the fabric and flow-rate.

1 Introduction
Flowing granular materials are commonly found in geophysical
and industrial processes as well as in our everyday life. The gran-
ular flow produced between tectonic plates during an earthquake,
the flow of grain in a silo, and dry rice pouring from a bowl to
a pot, are just a few examples of an enormous variety of pro-
cesses where particles move as a granular assembly. These flows
present a more diverse phenomenology than Newtonian viscous
liquid flows because of a complex interplay between three differ-
ent scales. The first scale corresponds to the microscale, asso-
ciated with the dynamics of individual grains, the second is the
mesoscale related to the connection between grains forming force
chains, and the last corresponds to the macroscale determined by
the size of the flowing region. An important connection between
two of these scales was made through the dimensionless variable
called inertial number: I = dγ̇/

√
p/ρp,1–4 where d corresponds to

the mean diameter of particles, γ̇ represents the shear-rate, p the
confining pressure, and ρp the density of grains’ material. This in-
ertial number, obtained specifically for hard particles subjected to
steady simple shear, can be interpreted as a ratio of microscopic to
macroscopic time scales I = tmic/tmac, where tmic = d/

√
p/ρp rep-

resents the time that a particle spends entering a hole of diameter
d under the unbalanced action of the pressure.1 The macroscopic
time tmac = 1/γ̇ is related to the global movement of the medium.
The inertial number is formed by all the input variables involved
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in simple shear and I is the only dimensionless control variable
in a system of quasi-monodisperse hard particles.1 Accordingly,
outputs like the effective friction coefficient defined as the ratio
between shear stress and pressure µ = τ/p, depend only function
of I, which gives us the inertial rheology: µ = µ(I).

The inertial rheology can be written in a tensorial form for
flows where the velocity field v is not one-dimensional, assum-
ing that the shear-rate tensor D = 1

2
(
∇v+(∇v)T ) and shear stress

tensor are aligned,5,6 that is:

τττ =
µ(I)p√

2
D
|D|

. (1)

Here, τττ = σσσ ′ ≡ σσσ − (trσσσ)I/3 is the stress deviator, the modulus
for tensors is defined as: |M|=

√
∑i, j Mi jMi j. This 3D model con-

siders the granular medium as an incompressible fluid to impose
the condition D = D′.4

The µ(I) rheology and its 3D extension have some impor-
tant limitations. In general, the inertial rheology has impor-
tant discrepancies with experiments and DEM simulations in non-
homogeneous fields.7,8 In these cases non-local effects associated
with a cooperative behaviour of the granular medium emerge.
The cooperative behaviour or non-local effect has been mod-
eled principally based on second-order partial differential equa-
tions as in the granular fluidity model,9–11 and in the µ-corrected
model.12,13

Up to this point, we have only consider steady granular flows,
condition where the inertial rheology and its non-local correc-
tions were obtained. These steady models have been formulated
without explicitly considering the mesoscale, intimately linked
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to transient processes. The mesoscale in dense granular flows
takes the form of force networks, commonly called force chains, a
concept reinforced during the 70’s decade by the intensive use of
new photo-elastic techniques and discrete element methods.14,15

Transient shear-rate inputs have an important effect on forces
chains which has been studied in Utter et al.16 Essentially, when
a flowing granular material at steady state experiences a rapid
change in the shear-rate direction (or magnitude), a change in
the force chains follows but is not instantaneous, because there
is a finite relaxation time needed for the rearrangement of the
contact network.17 The contact network, and thus the system’s
stress, is strongly linked to the force chains and represents a
physical structure of granular assemblies that strengthens them.
Several forms have been developed to capture the evolving
strength response through transient models, but due to the
complexity of the problem, a variety of frameworks with different
level of detail have been presented. In general, some transient
cases can be treated in a simplified way, especially when the
shear-rate does not change its direction drastically. On the other
hand, the presence of large changes in the share-rate direction
(for example a shear-rate reversal), requires more sophisticated
models. A simple categorization for transient models is given
below.

Steady state approximation: Well-known relations for steady
flows, like the inertial rheology have been applied to solve tran-
sient granular flows in processes where the contact network does
not change its direction dramatically. One example corresponds
to the collapse of a granular column, where particles fall down
rapidly and form a heap. Here, many authors have used consti-
tutive steady-state models to estimate the surface profiles of the
granular medium, obtaining a good agreement with experiments
and DEM simulations. In Lacaze et al.18 the inertial rheology
µ = µ(I) was verified in data collected from discrete element sim-
ulations during the collapse of a cylindrical column of granular
matter. Then, this case was simulated as a continuum medium
by using the local inertial rheology19–23 and later by adding
a non-local relation as in Lin et al.24. Another configuration
where steady-state relations are used to approximate transient
flows corresponds to granular avalanches on smooth surfaces.
In Juez et al.25 the depth-averaged procedure, along with some
empirical shear stress relations is performed to simulate a mass of
particles falling down by gravity on a curved floor, while in Gray
et al.26 the Mohr-Coulomb yield criterion is used in a similar
configuration. Note that the depth-averaged method is applicable
if the movement of the fluid has predominantly one direction of
flow, which is also a condition for minimizing structural changes
in granular media. A similar depth-averaged approach based on
steady-state rheology was used earlier to predict the formation
of Kapitza waves on the surface of inclined granular beds, which
are unsteady features27.

Plasticity without an explicit anisotropic variable: Plasticity
theory and its variants can be used for modeling transient granu-
lar flows without including explicitly a new variable to represent
the structural anisotropy of the medium. This framework has

been mainly restricted to model dry sand and soils at small and
large scale. One of these frameworks is the visco-elasto-plastic
model proposed by Babeyco et al.28 for simulating the transient
subducting movement of tectonic plates. The zone of fluidization
between plates is assumed to be a Maxwell visco-elastic material.
Several continuum granular simulations of plasticity theory
combine with the critical state concept to couple strength and
dilatancy.29 For example, in Khalili et al.30 a model based on the
plastic-bounding-surface theory plus a modified critical state line
is used to mirror complex strain-stress cycles for drained sand.
More model combinations involving critical state theory include
Golchin et al.,31 where a hyper-elasticity model is presented to
simulate loading and unloading in triaxial tests for sand; and Yin
et al.32, where a double-yield-surface framework is developed for
clay. Other plasticity frameworks applied to transient problems
include hypo-plasticity33 and visco-plasticity.34

Anisotropic models: In granular matter there exists an
anisotropy associated to the particles’ shape and another to the
contact distribution among the particles. In this paper we only
consider contact anisotropy, which can be isolated by keeping par-
ticle shapes spherical. To model the anisotropy, a homogenized
state variable must be evolved according to a differential equa-
tion. Most continuum models focus essentially on quasi-static
processes occurring for I < 10−3,2,35 and they can be split into
three types:

1. Scalar anisotropy: Like stresses and deformations, the con-
tact structure of a granular medium has major and minor di-
rections, which indicates a tensorial representation. In some
cases the anisotropy can be reduced to a scalar variable, as
in the model presented in Magnanimo et al.36 This model is
formed by two scalar differential equations to replicate re-
sults obtained from DEM simulations. The first equation is
for the stress, and the second is an evolution equation for a
scalar structural anisotropy. A more general version of this
model is shown in Kumar et al.37

2. Fabric tensor evolution equation: A more direct way to rep-
resent the anisotropy is by forming a tensor from the contact
directions between grains. The evolution of this fabric tensor
is governed by a differential equation38,39 that must obey
certain representation theorems40 arising from the objectiv-
ity principle. These requirements constrain how to express
the fabric evolution equation in terms of the other tensors
involved, but still ultimately some coefficients have to be fit-
ted.41 Fabric evolution models of this type have also been
used to model anisotropy of particle orientations for aspher-
ical grains.42

3. Backstress evolution equation: A backstress is a tenso-
rial, stress-united state variable commonly used in fields
like metal plasticity to model evolving, direction-dependent
shear strength. The shear resistance in models of this type,
known collectively as kinematic hardening models, is the
sum of a backstress and an isotropic resistance to plastic
deformation. The concept has been extended to transient
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strength in granular media; for example, Nemat-Nasser et
al.43 proposed a kinematic hardening model that considers a
backstress proportional to the fabric tensor. Thus, backstress
models for granular media can be a type of fabric model.

Below, a new stress and fabric model for dense granular flows
during transient 3D shearing is presented. The model is based on
isotropic and kinematic hardening theory. Specifically, the model
considers the deviatoric stress tensor as the sum of a backstress
proportional to the fabric tensor, plus an isotropic part propor-
tional to the unit shear-rate tensor. A tensorial differential evo-
lution equation for the fabric is also proposed. This equation
includes a key new parameter called contact persistence to con-
sider the capacity of a granular assembly to maintain its contacts
depending on the shear-rate direction with respect to the fabric.
Three-dimensional DEM simulations were performed in a Couette
cell, where the shear-rate tensor was rotated through various an-
gles with respect to the axis perpendicular to the cell walls. The
objective of this rotation is to produce an evolution of the fabric
and stress out of the plane of the shear deformation, which is not
possible in previous 2D configurations.38,39,43These kind of pro-
tocols to produce transients have also been used in other related
areas like suspensions.44–46 Lastly, we will analyze the newly pro-
posed model thermodynamically and show how, when coupled
to a proper dilatancy relation, the model necessarily satisfies the
second-law requirement of non-negative dissipation.

2 Numerical setup
The setup consists of a 3D planar Couette cell formed by a gran-
ular medium of spherical particles confined between two rough
square walls (see Fig. 1). Periodic boundary conditions are ap-
plied to all lateral sides of the cell. To avoid segregation or crys-
tallization, the diameters of the internal spheres follow a uniform
distribution in the range [0.5d,1.5d], where d is the average diam-
eter. The mass density of particles ρp is constant. The walls are
made of spheres of diameter d, and they are two layers thick. The
first layer is a compacted square-planar configuration, and the
second layer is made of spheres alternating with empty spaces to
increment the walls’ roughness. The width of the cell is W = 20d
and the height between walls is H = 17d.

The numerical setup is built on the DEM platform Yade.47

The sphere interactions are simulated with frictional-visco-elastic
forces in the normal and tangential directions. The normal rigid-
ity kn of the particles is set to produce a characteristic mean over-
lap of δ = pd2/kn = 0.0005d, ensuring that the medium remains
in the quasi-rigid regime. The tangential rigidity is kt = 0.5kn.17

The normal and tangential damping constants cn and ct are fixed
to achieve a restitution coefficient equal to 0.5. A tangential
Coulomb friction is added with a friction angle equal to 24◦.

The vertical movement of the walls (parallel to ê2) is controlled
by a proportional control system as in Rojas et al.39 to produce a
constant normal stress p in the granular medium. The walls are
also subjected to a periodic horizontal velocity U⃗w to produce a
transient shear-rate. The period T is divided into two parts. Dur-
ing the first part, from t = 0 to t = T/2, the velocity of the top wall
is in the ê1 direction, while the bottom wall moves in the opposite

direction, producing a mean velocity gradient of γ̇ = 2Uw/H. At
t = T/2 the direction of the walls’ velocities are rotated instanta-
neously about ê2 by an angle θ , and shear continues until t = T .
This cycle is repeated five times to obtain an average periodic cy-
cle for stress and fabric. Note that the periodic cycle implies a
change in the direction of the walls’ velocities at t = 0 from an
angle θ > 0 to θ = 0. To incorporate this initial condition a pre-
vious half period is also simulated from t =−T/2 to t = 0 (see the
left side of Fig. 1). The period considered is T = 1.4/γ̇, enough
to develop a steady state for fabric and stress in each part of the
cycle. The inertial number corresponds to I = 0.00029, lower than
the quasi-static limit of 0.001. This limit was previously verified
for the reversal case to produce rate independence. The angle of
rotation θ of the shear-rate tensor ranges from 30◦ to 180◦.

3 Continuum model

3.1 Previous concepts about kinematic hardening

Kinematic hardening models are commonly used in plasticity,
most commonly for metals, to model specimens subjected to
cyclic loading where there exist elastic and plastic deformation.
These models are capable of reproducing internal stresses that
emerge in cycles of stretching and compression. In metals, the in-
ternal stresses during flow are associated with two mechanisms.
The first one corresponds to plastic-strain incompatibilities be-
tween crystal grains of different orientations, and between grains
and non-deformable precipitate particles. The second mecha-
nism is associated with the polar nature of dislocations, which
are formed in the forward deformation and then annihilated dur-
ing reversal.48 The generation of internal stresses manifests as
hardening during tension and softening during compression, a
phenomenon known as the Bauschinger effect.49

It is useful to review the essential ingredients of a backstress
hardening model as exemplified by the modified Von-Mises flow
rule:50

τττ = B+ τY
D′

p

|D′
p|
, when D′

p ̸= 0 (2)

where B is the backstress, τY is the isotropic flow resistance, and
Dp is the plastic deformation rate tensor which combines with an
elastic part to provide the total deformation rate: D = De +Dp.
We use ′ to indicate the deviatoric part. Similarly, one defines a
yield condition

f = |τττ −B|− τY ≤ 0, (3)

such that during plastic flow f = 0. One generally expresses the
backstress as a multiple of a kinematic state variable measuring
internal anisotropy in the material, denoted A, reflecting the con-
centration and orientation of defects:

B def
= cA . (4)

The plastic flow model is then closed by positing an evolution
relation for the anisotropy variable, such as

▽
A = k1Dp + k2|Dp|A, (5)
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Fig. 1 Numerical setup. The red line corresponds to time, with tick marks indicating changes to the walls’ velocities. The part from t = 0 to t = T
corresponds to one period. A half period at the beginning was also simulated. The different walls’ velocities for each part of the periodic cycle are
shown. From t = 0 to t = T/2, the velocity of the top wall is in the ê1 direction, while the bottom wall moves in the opposite direction. At t = T/2 the
direction of the walls’ velocities are rotated instantaneously by an angle θ in the plane perpendicular to ê2 until t = T . Note that there is a previous
walls’ rotation at t = 0 to produce a periodic process.

where
▽
A = Ȧ+AW−WA is the Jaumann rate of A with Ȧ being

the material time derivative of A, and W the spin tensor given by
(∇v− (∇v)T )/2. The Jaumann rate is a frame-indifferent tensor
which is introduced to achieve objectivity in A. In equation 5 the
term k1Dp, where k1 is a scalar function, grows A directly with
the plastic strain-rate, while the expression k2|Dp|A represents a
recovery term that limits the growth of A during steady shearing
where k2 < 0.51

As with the strain-rate, it is assumed that the strain admits a
decomposition into elastic and plastic parts: E = Ee +Ep where
E is the strain tensor. The Cauchy stress σσσ is then related to the
elastic strain through an elasticity relation, such as the common
linear isotropic relation:

σσσ = 2λEe +

(
κ − 2

3
λ
)

tr(Ee)I. (6)

In Eq. 6, I is the identity tensor, and λ and κ are scalars.

The system above relating stress, elastic/plastic deformation,
and state variables is a simple elasto-plastic flow model with
isotropic and kinematic hardening, and serves as the inspiration
for the modeling form we will adopt for granular media in the
next section. While the ultimate mathematical form inspires the
model we will present, it is key to note that physically, our model
has very different justification than in the case of metals, as can be
seen through an analysis of the second law of thermodynamics.

The second law can be expressed as a guarantee of non-
negative overall dissipation, i.e.

σσσ : D−
·
ψ ≥ 0, (7)

where ψ represents the (Helmholtz) free energy per unit volume
and σσσ : D ≡ ∑i, j σi j : Di j is the rate of work being done by the

stress. In the case of plastically incompressible models of metals,
the plastic part of the work rate, τττ : Dp, can sometimes be nega-
tive depending on the orientation of the backstress as implied by
equation 2. However, the free energy ψ depends not only on the
elastic strain but also on A because the defects in metals possess
a separate internal energy. It is the balance between the plastic
work rate and the rate of evolution of ψ, through its dependence
on A, that ensures the model always satisfies the second law in-
equality even when τττ : Dp < 0.50

In the case of granular media, the model we obtain also al-
ways satisfies the second law, but does so due to a compressibility
mechanism that is distinct from that due to defect energy. This
will be described in some detail in section 5.

3.2 Hardening variables and new fabric evolution equation

The model proposed in the present study also combines isotropic
and kinematic hardening. In this model, the anisotropic kine-
matic variable A is the fabric tensor defined by:

A =−1
3

I+
1

Nc
∑
c∈V

n⊗n, (8)

where n is the unit contact vector between two grains, and Nc

the number of contacts c inside of the volume V . The evolution
equation for the fabric tensor presented in this study is rooted in
the equation proposed in Rojas et al.39:

▽
A = α1(X)D′+α2(X) |D′|A, (9)

where αi(X) are coefficients, X =A : D′/|D′|. Note that the present
study considers processes where the elastic deformation is negli-
gible so that D′ ≈ D′

p. This previous evolution equation, which
covers only 2D transients processes, will be expanded and modi-
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fied in the present work to 3D cases adding more physical argu-
ments associated to the interplay between fabric and shear-rate.
In Rojas et al.39 it was shown that both coefficients αi diverge
when a reversal of the shear-rate tensor is imposed. However,
this behaviour was not explained nor associated with a physical
phenomenon. To address this issue, we now introduce a new
scalar hardening variable S:

S def
= |A|−A :

D′

|D′|
. (10)

Note that S is a modification of a previous state variable de-
noted X . The new variable S is associated with the capacity of the
fabric network to keep grains in contact, which will be explained
with the aid of Fig. 2. In this figure, the fabric and shear-rate
tensors are drawn for simple shear at steady state and just after
a shear-rate reversal. In simple shear at steady state, the grains
form contact chains inclined 45◦ (blue circles in Fig. 2) to the
shear plane. In this case, the shear-rate tensor corresponds to
D′ = 0.5γ̇(ê1 ⊗ ê2 + ê2 ⊗ ê1), which is represented by red arrows
in Fig. 2.a (note that γ̇ is positive). On the other hand, the fabric
tensor in this case has the form A = A12(ê1 ⊗ ê2 + ê2 ⊗ ê1), where
A12 is negative (blue arrows in Fig. 2.a). Since, at steady state,
the fabric and shear-rate are antiparallel tensors pointing in oppo-
site directions, we have the steady state relation A =−|A|D′/|D′|.
Substituting this in Eq. 10, we have S = 2|A|. On the other hand,
just after a shear-rate reversal, D′ changes its direction instanta-
neously, but A temporarily keeps its previous directionality be-
cause the contact network needs time (shear strain) to reorient
(Fig. 2.b). Hence, at this moment A = |A|D′/|D′|, and S = 0.

The physical meaning of S can be explained upon rotating the
coordinate system 45◦ (Fig. 2.c and 2.d). Figure 2.c shows that
there is a compression-rate component aligned with the contact
network at steady state. This situation is favorable for maintain-
ing these contacts. In other words, the contact network resists
change under this combination of A and D′, which in turn is as-
sociated with a maximum S value equal to 2|A|. Figure 2.d shows
the opposite situation just after the reversal, where the strain-rate
acts to separate the grains without resistance. This happens be-
cause there are no attractive forces between grains to resist the
stretching motion and is coincident with a zero value of the vari-
able S. Another way to express the hardening variable S is

S = |A|(1− cos(θAD)), (11)

where cos(θAD)≡ A : D′/(|A||D′|). At steady state θAD = 180◦ and
S = 2|A|. Just after an instantaneous shear-rate reversal θAB =

0 and S = 0. In summary, the variable S is maximal when D′

reinforces the contacts by pushing particles together and takes a
zero value (minimum value), when D′ pulls particles apart along
the contact axis.

By using equation 9, the coefficients αi were obtained in Ro-
jas et al.39 from 2D DEM data collected from shear-rate reversal
tests. This method was revisited for the 3D setup presented in Fig.
1, which reveals that the fabric evolution coefficients can actually

Steady
state

Just after
reversal

A

A

D'

D' A D'

A D'

45o

S=2|A| S=0

a) b)

c) d)

e1
^

e1
^

e2
^

e2
^

Fig. 2 Tensors’ components for A and D′ and S values are displayed at
steady state and just after reversal for 2D simple shear. The components
are showed respect to a coordinate system pointing in the horizontal and
vertical direction, and respect to a second coordinated system rotated
45◦.

be written more clearly in terms of S:

αi(S) =
βi(S)
Λ(S)

. (12)

Here, βi(S) = ai + biS and Λ(S) = S3/4. Figures 3.a and 3.b show
the fit functions αi(S). The factor 1/S3/4 is introduced to fit the co-
efficients in the diverging zone when S is near zero after reversal,
while the βi(S) are an important part of the fit for adjusting the
low slope zone to correctly approach the fabric steady state. The
exponent 3/4 was obtained from the insets of figures 3.a and 3.b.
Figures 3.c and 3.d show that the coefficients βi do not diverge.
The fitting parameters for βi are shown in table 2.

The term Λ can pass to the left side in equation 9 to obtain the
fabric evolution equation proposed in the present study:

Λ(S)
▽
A = β1(S)D′+β2(S) |D′|A . (13)

We call the factor Λ the contact persistence since, as can be seen
in Eq. 13, a larger Λ associates with a smaller propensity for
the contact structure to change, which agrees with the previous
physical analysis associated with figure 2.

3.3 Shear stress model

Unlike in Rojas et al., we now consider a shear strength model
with a kinematic hardening form, using a backstress and an
isotropic term. Both terms are considered proportional to the
pressure like in Nemat-Nasser et al.43 The backstress is assumed
to be a negative multiple of the fabric tensor defined in equation
(8), while the isotropic part is chosen as a multiple of the devia-
toric shear-rate tensor:

τττ
p
=C(S)A+Y (S)

D′

|D′|
, when D′ ̸= 0 . (14)
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Fig. 3 Light blue points in figures a) and b) correspond to the value of the αi coefficients from Eq. 9 versus the S hardening variable obtained from a
DEM reversal (insets show the absolute values of αi on a logarithmic scale). Fit functions αi(S) are shown with solid lines. Light blue points in figures
c) and d) corresponds to the βi coefficients from equation 13 versus the S hardening variable from the DEM reversal while solid black lines represent
linear fits.

The functions C(S) and Y (S) were obtained from DEM simulations
rotating the walls’ velocities, as per Fig. 1, from θ = 30◦ to 170◦.
For this purpose, at each instant, C and Y were considered as
unknowns in equation 14 and solved using the off-diagonal com-
ponents of this equation. Note that it is not possible to calibrate C
and Y using reversal data only (θ = 180◦), since equation 14 only
has one component in this case. This may explain why studies
based on 2D DEM data have not discovered the underlying back-
stress model. Figure 4 shows the DEM results for C and Y and the
fit functions for the shear stress model.

Figure 4.a shows that C obtained from DEM simulations is al-
ways close to a constant value, which corresponds to C = −5.6.
The DEM results for Y are well-approximated by the linear func-
tion Y = n+mS (see Fig. 4.b). Table 1 shows a summary of all
the equations in the flow model proposed, and Table 2 shows the
fitted values of the parameters.

4 Results

We solve the continuum model proposed in the present work us-
ing an explicit numerical method for equation 13 to obtain the
evolution of the fabric tensor. Then the stress is obtained using
equation 14. Since the problem is periodic in time, the initial
conditions for equation 13 are the final fabric tensor values of
each period of time, which we take from the same model results.
Figures 5 and 6 show the evolution of the off-diagonal compo-
nents for fabric and stress during transients compared with DEM
simulations. Six θ angles for the shear-rate rotation were eval-
uated (30◦,60◦,90◦,120◦,150◦, and 180◦). Both models for fabric
and stress are in agreement with the DEM simulations for all the
cases analyzed. This agreement is stronger for angles between
30◦ and 90◦, and also for the reversal case (θ = 180◦), while for
120◦ and 150◦ the model presents a faster arrival to the steady
state for the smaller fabric and stress components.

A specific case of interest is θ = 90◦ (Figs. 5.e and 5.f), where
the first half of the cycle is only in the plane perpendicular to
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Fig. 4 DEM results and fit functions for the shear stress model proposed in the present work (Eq. 14). a) Backstress parameter C, b) Yield function
Y (S).

Rule or relation Equation Number
Flow rule τττ

p =CA+Y (S) D′

|D′| (20)

Scalar hardening variable S = |A|−A : D′

|D′| (21)
Yield function Y (S) = n+mS (22)

Fabric evolution equation Λ(S)
▽
A = β1(S)D′+β2(S)|D′|A (23)

Contact persistence Λ(S) = S3/4 (24)
Fabric equation coefficients βi(S) = ai +biS (25)

Table 1 Summary of the equations involved in the isotropic and kinematic hardening model described in sections 3.2 and 3.3.

Fitting parameters
Backstress constant

C =−5.6
Yield function parameters

n = 0.18
m =−0.60

Fabric equation parameters
a1 =−0.021

b1 =−2.7
a2 = 0.25
b2 =−35

Table 2 Summary of the calibration parameters involved in the isotropic
and kinematic hardening model presented in Table 1.

ê3 (D12 component), while the second half is only in the plane ê1

(D32 component). Here, the stress is always in a rate-independent
relaxation process in a plane where there is no shear strain-rate.
For example, the τ32 component is relaxing from its steady state
value to zero during the first part of the period (see blue points
in Fig. 5.f). The values of τ32 remain non-zero for almost the
entire first half of the cycle even though D32 is zero. During this
time the shear stress and shear-rate tensors are highly misaligned.
The stress relaxation corresponds to a backstress evolution in the
plane without shearing and produces stress components that are
well-matched by the new model, equation 14 (black curves in
Fig. 5.f). In contrast, the vast majority of existing granular flow

models presume alignment of the principal directions of shear-
rate and shear stress, which would incorrectly give τ32 = 0 for the
entire first half of the cycle. An identical backstress relaxation
occurs for τ12 during the second half of the period, which is also
well predicted by the new stress model.

The model presented in this study was also tested applying
shear-rate rotation while transient relaxations are still in process
to verify its robustness. Figure 7 shows the results of the rotation
for θ = 90◦ at the intermediate dimensionless times: t γ̇ = 0.1 and
t γ̇ = 0.2. The model shows a good agreement with DEM simula-
tions for all the fabric and stress off-diagonal components.

The shear stress can be also analyzed by comparing the two
parts that make it up: the backstress from B and the isotropic part
whose magnitude is Y . Figure 8.a shows a comparison of these
two parts in the shear-rate reversal case. The first observation is
the large magnitude of the backstress, which corresponds to 88%
of the shear stress at steady state. A second observation is that the
isotropic stress is greater near S = 0, which is well-captured by the
model due to the negative slope of the yield function Y = Y (S). A
last observation arises by comparing the relaxation times of both
terms. Following the DEM data in figure 8.a, the isotropic part
approaches steady state at t γ̇ = 0.25, while the backstress has a
slower relaxation of t γ̇ = 0.6, which is more than double.

This last observation, combined with the presumption that C
is a constant, allows us to calibrate the new shear stress model
using only a reversal DEM test. When the shear stress is nearing
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Fig. 5 Comparison between model and DEM simulations of the off-diagonal components of the fabric and normalized shear stress during transients.
The angles θ of the shear-rate rotation corresponds to [30◦,60◦,90◦]. Figures a), c), and e): fabric components comparison. Figures b), d), and f):
comparison of the normalized shear stress components.

steady state after a reversal, only the backstress is still evolving,
and thus ∆τ12 ≈ ∆B12 = C∆A12. Therefore, near the steady state
after a shear-rate reversal, it is possible to compute C as

C ≈ ∆τ12

∆A12
, (15)

as shown in figure 8.b. This linear slope near the steady state
when τ12 is plotted versus A12 after a reversal is also present in
other studies.38,39 The yield function Y can be obtained from the

same reversal DEM data by plotting

Y =

(
τττ
p
−CA

)
:

D′

|D′|
, (16)

as a function of the scalar hardening variable S. Finally, the fabric
evolution can be calibrated by using the same procedure from
before, which is based on considering βi as unknowns in Eq. 13.
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Fig. 6 Comparison between model and DEM simulations of the off-diagonal components of the fabric and normalized shear stress during transients.
The angles θ of the shear-rate rotation corresponds to [120◦,150◦,180◦]. Figures a), c), and e): fabric components comparison. Figures b), d), and
f): comparison of the normalized shear stress components.

5 Second-law justification of model
The justification for a backstress appearing in kinematically hard-
ening metals is that the free energy function has a defect energy
contribution, which evolves in such a way to cancel any nega-
tive plastic work-rate that may occur due to the backstress. In a
granular material it is not clear that the free energy should have
a separate contribution depending only on A. Microscopically,
such a defect energy would require a way for grains to remain
compressed (i.e. store energy) even when all external confining

stresses are removed, which would be seemingly impossible for
cohesionless grains. That said, the flow model we have presented
still admits the possibility that τττ : D′ is negative, which typically
occurs just after reversal when τττ has the opposite direction as D′

due to the fabric (and hence backstress) needing time to change
from the state before reversal. One might ask, how does such a
model not violate the second law?

The key to understanding this point is to realize that shear-
ing a granular material under constant pressure does not pro-
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Fig. 7 Comparison between model and DEM simulations of the off-diagonal components of the fabric and normalized shear stress during transients
for θ = 90◦ rotated at small strains. Figures a) and b) show the fabric and normalized shear stress components for a change in the shear orientation
at t γ̇ = 0.1, while for figures c) and d) the change is when t γ̇ = 0.2.

duce isochoric motion, but rather produces a noticeable dila-
tion/contraction that evolves during flow. Suppose for ease of
derivation that the elastic moduli of the grain material are high
enough that the elastic work-rate and elastic strain are always
small, such that all motion can be viewed as purely plastic mo-
tion. Then D ≈ Dp, ψ = ψ̇ = 0, and we can write the second law
as

0 ≤ σσσ : D = τττ : D′− p trD = τττ : D′+ pΦ̇/Φ, (17)

where Φ is the packing fraction. It is important to note that if dila-
tion is non-zero, the pΦ̇/Φ term is nonzero and has the potential
to compensate for any negative work-rate from τττ : D′. An analysis
of DEM data in figure 9(a) confirms that even though τττ : D′ can
be negative immediately after flow reversal, the high compaction-
rate that occurs then causes an even larger, positive pΦ̇/Φ con-
tribution, which compensates to produce an overall plastic work-
rate that is always non-negative*. Thus, the second law is always
satisfied in these flows in spite of the occasional negativity of the
shear work-rate with no need to appeal to a defect energy.

* A few data points appear to produce negative overall work just after the reversal,
but this is actually from the very small elastic unloading of the grains, which should
be excluded since its motion is not part of Dp

Since the fabric/flow model we have presented focuses solely
on shearing behavior, we should be able to show that, when cou-
pled to an appropriate dilation model, the model in its entirety is
mathematically incapable of violating the second law. Thus, we
present and briefly validate a simple dilation model below.

Two basic assumptions can be used to guide the modeling of
granular dilatancy: (1) the packing fraction increases just after
flow reversal when A : D′ > 0, since contacts are being separated
and the structure is collapsing, and (2) in steady forward shearing
the packing fraction should evolve toward a constant critical state
value Φc. A simple rule obeying these assumptions is:

Φ̇/Φ = c1A : D′+ c2 (Φc −Φ+ c3)|D′| (18)

for positive scalars c1,c2,c3. The first term drives the packing
fraction to rise with shear when A : D′ is positive, which occurs
just after reversal. The quantity c2c3 must be chosen to approach
the steady state value of −c1A : D′/|D′| so that Φ evolves toward a
constant critical state value of Φc in steady shearing. This model
bears a number of similarities to models previously presented for
dilation38.

Substituting this dilation relation and equation 14 into the total
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work rate, we obtain

σσσ : D = τττ : D′+ pΦ̇/Φ

= p(CA+Y D′/|D′|) : D′+ p
(
c1A : D′+ c2 (Φc −Φ+ c3)|D′|

)
= p

(
Y |D′|+(C+ c1)A : D′+ c2 (Φc −Φ+ c3)|D′|

)
.

Since Y, p,c1,c2,c3 ≥ 0, the work rate formula above is necessarily
≥ 0, for any A and D′, if the parameters are chosen to satisfy

c1 =−C and Φ ≤ Φc + c3 . (19)

Figure 9(b) shows the packing fraction evolution in DEM versus
the results of the dilation model for c1 = −C = 5.6, c2 = 5.6S1/3,
c3 = 0.14, and Φc = 0.652. It can be seen that the model compares
favorably to DEM with these values, which satisfy the constraints
in equation 19, with c2c3 approaching −c1A : D′/|D′| as required.

We have thus shown that a simple dilation model can be found
that agrees with DEM data, captures the essential ingredients of
transient granular dilatancy, and guarantees the model for shear

flow is justified thermodynamically under the second law. To be
clear, it is not the primary intention of this paper to present a
dilatancy model. We present it simply to validate the physical
grounds of the fabric/shear-flow model we have introduced. Do-
ing so also shows how a relation between volume change and fab-
ric structure can give rise to a justifiable backstress in the shear
strength, offering an alternative route to the typical explanation
for backstresses based on defect energy in metal plasticity.

Conclusions and final remarks
The present work presents a three-dimensional granular flow
model for predicting the fabric and shear stress history when the
medium is subjected to cycles of unaligned shearing. The model,
based on combined isotropic and kinematic hardening, considers
a fabric evolution equation and a flow rule. The fabric tensor
evolution is a differential equation built under three tenets pro-
posed in this work: 1) there is an input term, proportional to the
shear-rate tensor, that can act to modify the contact structure of
a granular assembly; 2) the medium balances the input by means
of a recovery term, proportional to the fabric; and 3) there exists
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a contact persistence that scales the overall rate-of-change of fab-
ric, which depends on the relative direction of the shear-rate with
respect to the fabric tensor. This conceptualization allows us to
pose the evolution equation as a cause-effect process, giving us a
physical sense of the fabric transient response.

The flow rule for the media’s shear strength, consists of: 1)
a structural term or backstress, proportional to the fabric ten-
sor; and 2) an isotropic term, proportional to the unit shear-rate
tensor. This decomposition is supported by DEM data obtained
through a methodology to relax the contact structure and shear
stress out of the plane of shearing. By including the backstress,
the model links directly the mesoscale, represented by the fabric
tensor, with the shear stress. On the other hand, the isotropic
part of the model resists any motion in any direction. The entire
model can be calibrated by using only a reversal test, as we ex-
plained at the end of section 4, avoiding the necessity to perform
more complex 3D tests.

Through 3D DEM simulations the existence of the backstress
during transient and steady state was demonstrated. Also, the
backstress constitutes the largest part of the shear stress resis-
tance in simple shear, which is consistent with the idea of the
connection between the structure of the granular medium and its
resistance to flow. There is a good agreement between the results
of the model and DEM simulations over off-diagonal components
of the fabric and shear stress, when a sudden shear-rate rotation
is imposed to the granular system. Note that this comparison was
made for almost the entire possible range of the rotation of shear
direction (between 30◦ and 180◦).

Backstress-based models were developed in metal plasticity and
their effectiveness here draws an interesting connection between
these materials. However, in metals they are justified by intro-
ducing a free-energy contribution due to microscopic anisotropic
internal defects, whose stored energy remains even when macro-
scopic stresses on the system are released. On the other hand, we
have shown that the backstress in granular media is of a different
physical origin even if it ultimately produces a transient shear-
flow model with many of the same mathematical features. In
granular flow, the backstress does not arise from energetic effects
but rather because the packing fraction evolution is influenced di-
rectly by the fabric tensor, with densification occurring when the
fabric and flow-rate tensors align. There are in fact two parallel
phenomena that occur just after a shear-rate reversal. First, in
the stretching direction aligned with the contact network, grains
are separated with no resistance, which is consistent with a null
contact persistence. At the same time, in the perpendicular direc-
tion, the grains are pushed closer at an angle where the contact
structure is not yet present to resist this movement, inevitably
producing a compression of the granular medium.

Finally, the model proposed in this work was tested only in the
quasi-static regime, and always considering shearing. More rapid,
inertial cases should be analyzed to find coefficients as a function
of the inertial number for the fabric evolution equation and flow
rule. Compression-stretching displacements could be analyzed in
the future to model the fabric and stress diagonal components.
The existence of backstress in other granular materials, like those
comprised of elongated particles, could also be tested.
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